Astera Data Stack
Version 8
Version 8
  • Welcome to Astera Data Stack Documentation
  • Release Notes
    • Astera 8.0 - What's New, What's Fixed, and What's Improved
    • Astera 8.0 - Known Issues
    • Astera 8.1 - Release Notes
    • Astera 8.2 Release Notes
    • Astera 8.3 Release Notes
    • Astera 8.4 Release Notes
    • Astera 8.5 Release Notes
  • Getting Started
    • Astera 8 - Important Considerations
    • Astera 8 - System Requirements
    • Configuring the Server
    • Connecting to a Different Astera Server from the Lean Client
    • Connecting to an Astera Server using Lean Client
    • How to Build a Cluster Database and Create a Repository
    • How to Login from Lean Client
    • Setting up a Server Certificate (.pfx) File in a New Environment
    • Installing Client and Server Applications
    • Licensing Model in Astera 8
    • Migrating from Astera 7.x to Astera 8
    • UI Walkthrough - Astera 8.0
    • User Roles and Access Control
  • Dataflows
    • Sources
      • Data Providers and File Formats Supported in Astera
      • Setting Up Sources
      • COBOL File Source
      • Database Table Source
      • Data Model Query Source
      • Delimited File Source
      • Email Source
      • Excel Workbook Source
      • File Systems Item Source
      • Fixed Length File Source
      • PDF Form Source
      • Report Source
      • SQL Query Source
      • XML/JSON File Source
    • Transformations
      • Introducing Transformations
      • Aggregate Transformation
      • Constant Value Transformation
      • Data Cleanse Transformation
      • Denormalize Transformation
      • Distinct Transformation
      • Database Lookup Transformation
      • Expression Transformation
      • File Lookup Transformation
      • Filter Transformation
      • Join Transformation
      • List Lookup Transformation
      • Merge Transformation
      • Normalize Transformation
      • Passthru Transformation
      • Reconcile Transformation
      • Route Transformation
      • Sequence Generator Transformation
      • Sort Transformation
      • Sources as Transformations
      • Subflow Transformation
      • SQL Statement Lookup Transformation
      • Switch Transformation
      • Tree Join Transformation
      • Tree Transform
      • Union Transformation
    • Destinations
      • Setting Up Destinations
      • Database Table Destination
      • Delimited File Destination
      • Excel Workbook Destination
      • Fixed Length File Destination
      • SQL Statement Destination
      • XML/JSON File Destination
    • Data Logging and Profiling
      • Creating Data Profile
      • Creating Field Profile
      • Data Quality Mode
      • Record Level Log
      • Using Data Quality Rules in Astera
    • Database Write Strategies
      • Database Diff Processor
      • Data Driven Write Strategy
      • Dimension Loader - Database Write
      • Source Diff Processor
    • Text Processors
      • Delimited Parser
      • Delimited Serializer
      • Fixed Length Parser
      • Fixed Length Serializer
      • Language Parser
      • XML JSON Parser
      • XML JSON Serializer
    • Data Warehouse
      • Fact Table Loader
      • Dimension Table Loader
  • WORKFLOWS
    • What Are Workflows?
    • Using the Workflow Designer
    • Creating Workflows in Astera
    • Decision Task
    • EDI Acknowledgement Task
    • File System Task
    • File Transfer Task
    • OR Task
    • Run Dataflow Task
    • Run Program Task
    • Run SQL File Task
    • Run SQL Script Task
    • Run Workflow Task
    • Send Mail Task
    • Workflows with a Dynamic Destination Path
    • Customizing Workflows with Parameters
    • GPG-Integrated File Decryption in Astera
  • Subflows
    • Using Subflows in Astera
  • Functions
    • Introducing Function Transformations
    • Custom Functions
    • Logical
      • Coalesce (Any value1, Any value2)
      • IsNotNull (AnyValue)
      • IsRealNumber (AnyValue)
      • IsValidSqlDate (Date)
      • IsDate (AnyValue)
      • If (Boolean)
      • If (DateTime)
      • If (Double)
      • Exists
      • If (Int64)
      • If (String)
      • IsDate (str, strformat)
      • IsInteger (AnyValue)
      • IsNullOrWhitespace (StringValue)
      • IsNullorEmpty (StringValue)
      • IsNull (AnyValue)
      • IsNumeric (AnyValue)
    • Conversion
      • GetDateComponents (DateWithOffset)
      • ParseDate (Formats, Str)
      • GetDateComponents (Date)
      • HexToInteger (Any Value)
      • ToInteger (Any value)
      • ToDecimal (Any value)
      • ToReal (Any value)
      • ToDate (String dateStr)
      • TryParseDate (String, UnknownDate)
      • ToString (Any value)
      • ToString (DateValue)
      • ToString (Any data, String format)
    • Math
      • Abs (Double)
      • Abs (Decimal)
      • Ceiling (Real)
      • Ceiling(Decimal)
      • Floor (Decimal)
      • Floor (Real)
      • Max (Decimal)
      • Max (Date)
      • Min (Decimal)
      • Min (Date)
      • Max (Real)
      • Max (Integer)
      • Min (Real)
      • Pow (BaseExponent)
      • Min (Integer)
      • RandomReal (Int)
      • Round (Real)
      • Round (Real Integer)
      • Round (Decimal Integer)
      • Round (Decimal)
    • Financial
      • DDB
      • FV
      • IPmt
      • IPmt (FV)
      • Pmt
      • Pmt (FV)
      • PPmt
      • PPmt (FV)
      • PV (FV)
      • Rate
      • Rate (FV)
      • SLN
      • SYD
    • String
      • Center (String)
      • Chr (IntAscii)
      • Asc (String)
      • AddCDATAEnvelope
      • Concatenate (String)
      • ContainsAnyChar (String)
      • Contains (String)
      • Compact (String)
      • Find (Int64)
      • EndsWith (String)
      • FindIntStart (Int32)
      • Extract (String)
      • GetFindCount (Int64)
      • FindLast (Int64)
      • GetDigits (String)
      • GetLineFeed
      • Insert (String)
      • IsAlpha
      • GetToken
      • IndexOf
      • IsBlank
      • IsLower
      • IsUpper
      • IsSubstringOf
      • Length (String)
      • LeftOf (String)
      • Left (String)
      • IsValidName
      • Mid (String)
      • PadLeft
      • Mid (String Chars)
      • LSplit (String)
      • PadRight
      • ReplaceAllSpecialCharsWithSpace
      • RemoveChars (String str, StringCharsToRemove)
      • ReplaceLast
      • RightAlign
      • Reverse
      • Right (String)
      • RSplit (String)
      • SplitStringMultipleRecords
      • SplitStringMultipleRecords (2 Separators)
      • SplitString (3 separators)
      • SplitString
      • SplitStringMultipleRecords (3 Separators)
      • Trim
      • SubString (NoOfChars)
      • StripHtml
      • Trim (Start)
      • TrimExtraMiddleSpace
      • TrimEnd
      • PascalCaseWithSpace (String str)
      • Trim (String str)
      • ToLower(String str)
      • ToProper(String str)
      • ToUpper (String str)
      • Substring (String str, Integer startAt)
      • StartsWith (String str, String value)
      • RemoveAt (String str, Integer startAt, Integer noofChars)
      • Proper (String str)
      • Repeat (String str, Integer count)
      • ReplaceAll (String str, String lookFor, String replaceWith)
      • ReplaceFirst (String str, String lookFor, String replaceWith)
      • RightOf (String str, String lookFor)
      • RemoveChars (String str, String charsToRemove)
      • SplitString (String str, String separator1, String separator2)
    • Date Time
      • AddMinutes (DateTime)
      • AddDays (DateTimeOffset)
      • AddDays (DateTime)
      • AddHours (DateTime)
      • AddSeconds (DateTime)
      • AddMonths (DateTime)
      • AddMonths (DateTimeOffset)
      • AddMinutes (DateTimeOffset)
      • AddSeconds (DateTimeOffset)
      • AddYears (DateTimeOffset)
      • AddYears (DateTime)
      • Age (DateTime)
      • Age (DateTimeOffset)
      • CharToSeconds (Str)
      • DateDifferenceDays (DateTimeOffset)
      • DateDifferenceDays (DateTime)
      • DateDifferenceHours (DateTimeOffset)
      • DateDifferenceHours (DateTime)
      • DateDifferenceMonths (DateTimeOffset)
      • DateDifferenceMonths (DateTime)
      • DatePart (DateTimeOffset)
      • DatePart (DateTime)
      • DateDifferenceYears (DateTimeOffset)
      • DateDifferenceYears (DateTime)
      • Month (DateTime)
      • Month (DateTimeOffset)
      • Now
      • Quarter (DateTime)
      • Quarter (DateTimeOffset)
      • Second (DateTime)
      • Second (DateTimeOffset)
      • SecondsToChar (String)
      • TimeToInteger (DateTime)
      • TimeToInteger (DateTimeOffset)
      • ToDate Date (DateTime)
      • ToDate DateTime (DateTime)
      • ToDateString (DateTime)
      • ToDateTimeOffset-Date (DateTimeOffset)
      • ToDate DateTime (DateTimeOffset)
      • ToDateString (DateTimeOffset)
      • Today
      • ToLocal (DateTime)
      • ToJulianDate (DateTime)
      • ToJulianDayNumber (DateTime)
      • ToTicks (Date dateTime)
      • ToTicks (DateTimeWithOffset dateTime)
      • ToUnixEpoc (Date dateTime)
      • ToUtc (Date dateTime)
      • UnixTimeStampToDateTime (Real unixTimeStamp)
      • UtcNow ()
      • Week (Date dateTime)
      • Week (DateTimeWithOffset dateTime)
      • Year (Date dateTime)
      • Year (DateTimeWithOffset dateTime)
      • DateToJulian (Date dateTime, Integer length)
      • DateTimeOffsetUtcNow ()
      • DateTimeOffsetNow ()
      • Day (DateTimeWithOffset dateTime)
      • Day (Date dateTime)
      • DayOfWeekStr (DateTimeWithOffset dateTime)
      • DayOfWeek (DateTimeWithOffset dateTime)
      • DayOfWeek (Date dateTime)
      • DateToJulian (DateTimeWithOffset dateTime, Integer length)
      • DayOfWeekStr (Date dateTime)
      • FromJulianDate (Real julianDate)
      • DayOfYear (Date dateTime)
      • DaysInMonth(Integer year, Integer month)
      • DayOfYear (DateTimeWithOffset dateTime)
      • FromUnixEpoc
      • FromJulianDayNumber (Integer julianDayNumber)
      • FromTicksUtc(Integer ticks)
      • FromTicksLocal(Integer ticks)
      • Hour (Date dateTime)
      • Hour (DateTimeWithOffset dateTime)
      • Minute (Date dateTime)
      • JulianToDate (String julianDate)
      • Minute (DateTimeWithOffset dateTime)
      • DateToIntegerYYYYMMDD (DateTimeWithOffset dateTime)
      • DateToIntegerYYYYMMDD (Date dateTime)
    • Files
      • AppendTextToFile (String filePath, String text)
      • CopyFile (String sourceFilePath, String destFilePath, Boolean overWrite)
      • CreateDateTime (String filePath)
      • DeleteFile (String filePath)
      • DirectoryExists (String filePath)
      • FileExists (String filePath)
      • FileLength (String filePath)
      • FileLineCount (String filePath)
      • GetDirectory (String filePath)
      • GetEDIFileMetaData (String filePath)
      • GetExcelWorksheets (String excelFilePath)
      • GetFileExtension (String filePath)
      • GetFileInfo (String filePath)
      • GetFileName (String filePath)
      • GetFileNameWithoutExtension (String filePath)
      • LastUpdateDateTime (String filePath)
      • MoveFile (String filePath, String newDirectory)
      • ReadFileBytes (String filePath)
      • ReadFileFirstLine (String filePath)
      • ReadFileText (String filePath)
      • ReadFileText (String filePath, String codePage)
      • WriteBytesToFile (String filePath, ByteArray bytes)
      • WriteTextToFile (String filePath, String text)
    • Date Time With Offset
      • ToDateTimeOffsetFromDateTime (dateTime String)
      • ToUtc (DateTimeWithOffset)
      • ToDateTimeOffsetFromDateTime
      • ToDateTimeOffset (String dateTimeOffsetStr)
      • ToDateTimeFromDateTimeOffset
    • GUID
      • NewGuid
    • Encoding
      • ToBytes
      • FromBytes
      • UrlEncode
      • UrlDecode
    • Regular Expressions
      • ReplaceRegEx
      • ReplaceRegEx (Integer StartAt)
    • TimeSpan
      • Minutes
      • Hours
      • Days
      • Milliseconds
    • Matching
      • Soundex
      • DoubleMetaphone
      • RefinedSoundex
  • Report Model
    • User Guide
      • Report Model Tutorial
    • Report Model Interface
      • Field Properties Panel
      • Region Properties Panel
      • Report Browser
      • Report Options
    • Use Cases
      • Applying Pattern to Line
      • Auto Creating Data Regions and Fields
      • Auto-Parsing
      • Creating Multi-Column Data Regions
      • Floating Patterns and Floating Fields
      • How To Work With PDF Scaling Factor in a Report Model
      • Line Count
      • Pattern Count
      • Pattern is a Regular Expression
    • Exporting Options
      • Exporting a Report Model
      • Exporting Report Model to a Dataflow
    • Miscellaneous
      • Importing Monarch Models
      • Microsoft Word and Rich Text Format Support
      • Working With Problematic PDF Files
  • API Flows
    • API Consumption
      • Consume
        • REST API Browser
        • Making HTTP Requests Through REST API Browser
        • Using REST Client Outside of the Scope of the Project
      • Authorize
        • Authorizing ActiveCampaign API in Astera
        • Authorizing Astera Server APIs
        • Authorizing Avaza APIs in Astera
        • Authorizing Facebook APIs in Astera
        • Authorizing QuickBooks API in Astera
        • Authorizing Square API in Astera
        • Open APIs - Configuration Details
  • Project Management
    • Project Management
      • Astera's Project Explorer
      • Connecting to Source Control
      • Deployment
      • Server Monitoring and Job Management
    • Job Scheduling
      • Scheduling Jobs on the Server
      • Job Monitor
  • Use Cases
    • End-to-End Use Cases
      • Data Integration
        • Using Astera to Create and Orchestrate an ETL Process for Partner Onboarding
      • Data Warehousing
        • Building a Data Warehouse - A Step-By-Step Approach
      • Data Extraction
        • Reusing The Extraction Template for Similar Layout Files
  • Connectors
    • Connecting to Amazon Aurora Database
    • Connecting to Amazon RDS Databases
    • Connecting to Amazon Redshift Database
    • Connecting to Cloud Storage
    • Connecting to Google Cloud SQL in Astera
    • Connecting to MariaDB Database
    • Connecting to Microsoft Azure Databases
    • Connecting to MySQL Database
    • Connecting to Netezza Database
    • Connecting to Oracle Database
    • Connecting to PostgreSQL in Astera
    • Connecting to Salesforce Database
    • Connecting to Salesforce - Legacy Database
    • Connecting to SAP HANA Database
    • Connecting to Snowflake Database
    • Connecting to Vertica Database
    • Setting Up IBM DB2 iSeries Connectivity in Astera
  • Miscellaneous
    • Cloud Deployment
      • Deploying Astera on Amazon Web Services
      • Deploying Astera on Microsoft Azure Cloud
      • Deploying Astera on Oracle Cloud
    • Context Information
    • Pushdown Mode
    • Role Based Access Control in Astera
    • Safe Mode
    • Server Command Line Utility
    • SmartMatch Feature
    • Synonym Dictionary File
    • Updating Your License in Astera
    • Using Dynamic Layout/Template Mapping in Astera
    • Using Output Variables in Astera
    • Using the Data Source Browser in Astera
  • Best Practices
    • Astera Best Practices - Dataflows
    • Overview of Cardinality in Data Modeling
    • Cardinality Errors FAQs
Powered by GitBook
On this page
  1. Connectors

Connecting to Amazon Aurora Database

PreviousReusing The Extraction Template for Similar Layout FilesNextConnecting to Amazon RDS Databases

Last updated 9 months ago

© Copyright 2025, Astera Software

Amazon Aurora is a fully managed relational database engine that is compatible with MySQL and PostgreSQL. It is a part of Amazon’s Relational Database Service (Amazon RDS) - a managed database web service that makes it easier to set up, operate, and scale a relational database on the cloud.

To learn more about Amazon Aurora, click here.

In Astera, users can connect with Aurora MySQL and Aurora PostgreSQL as a database source or destination, with DB lookup, SQL Statement Lookup, and Database Write Strategies, and also with Run SQL Script task in a workflow.

In this article, we will cover:

  1. A use case where Amazon Aurora PostgreSQL is being used as a database in Astera

  2. Connecting to Amazon Aurora PostgreSQL databases in Astera

  3. Different data loading and reading options for Amazon Aurora databases in Astera

Note: You can connect to both Amazon Aurora PostgreSQL and Amazon Aurora MySQL by following the same steps as discussed in the use case below.

Use Case

We have sample Orders data stored in an Amazon Aurora database. The data contains multiple fields containing information related to orders placed by customers. To make the shipment process more relevant, it is required to use specific codes for the Country field. We will use a List Lookup transformation and create a new table in the database.

We will be using the Database Table Source object to source data from the Amazon Aurora database.

  1. To configure the Database Table Source object, right-click on its header and select Properties from the context menu.

This will open a new window where you can configure a connection with the Amazon Aurora database.

  1. The first step is to select the Data Provider. Select Amazon Aurora PostgreSQL as your data provider from the drop-down list.

  1. Enter the required credentials for your Amazon Aurora PostgreSQL account.

    • User ID

    • Password

    • Server Name

    • Database

    • Schema

    • Port

  • Test Connection to make sure that your database connection has been established. Once it is successful, click OK, and then Next, to proceed to the next screen.

  1. Here, you can Pick Source Table and specify different Reading Options for your Amazon Aurora database.

Note: In this case, we will select the Orders table.

To learn more about data reading options in a Database Table Source, click here.

  1. Now, we will use the List Lookup object and provide the country codes for the fields.

To know more about how the List Lookup transformation works in Astera, click here.

  1. Next, we will write this data to our Amazon Aurora database using the Database Table Destination in Astera.

To configure the Database Table Destination object, right-click on its header and select Properties from the context menu.

This will open a new window on your screen.

Here you can configure the properties for the Database Table Destination object.

Since we have previously used the Amazon Aurora database to extract our source data, we can use the Recently Used credentials to connect to it again.

All the credentials have been filled in automatically.

  • Test Connection to make sure that your database connection has been established.

Next, you can choose either Pick Table or Create Table and specify different Writing Options for the Amazon Aurora Database on the Properties screen.

Note: In this case, we will create a new table and name it as ShipmentList.

To read more on the different data writing options available for a database table, click here.

Once you have set the data reading options, click OK.

We have successfully configured Amazon Aurora as our database provider for the Database Table Destination object. The data will now be written to the Amazon Aurora database once the dataflow is run.

Now, If we preview the data in the database table, we can see that the Country names have been replaced by their specific codes and written into the destination table.

We have successfully connected to the Amazon Aurora Database and completed our use case in Astera.