Astera Data Stack
Version 8
Version 8
  • Welcome to Astera Data Stack Documentation
  • Release Notes
    • Astera 8.0 - What's New, What's Fixed, and What's Improved
    • Astera 8.0 - Known Issues
    • Astera 8.1 - Release Notes
    • Astera 8.2 Release Notes
    • Astera 8.3 Release Notes
    • Astera 8.4 Release Notes
    • Astera 8.5 Release Notes
  • Getting Started
    • Astera 8 - Important Considerations
    • Astera 8 - System Requirements
    • Configuring the Server
    • Connecting to a Different Astera Server from the Lean Client
    • Connecting to an Astera Server using Lean Client
    • How to Build a Cluster Database and Create a Repository
    • How to Login from Lean Client
    • Setting up a Server Certificate (.pfx) File in a New Environment
    • Installing Client and Server Applications
    • Licensing Model in Astera 8
    • Migrating from Astera 7.x to Astera 8
    • UI Walkthrough - Astera 8.0
    • User Roles and Access Control
  • Dataflows
    • Sources
      • Data Providers and File Formats Supported in Astera
      • Setting Up Sources
      • COBOL File Source
      • Database Table Source
      • Data Model Query Source
      • Delimited File Source
      • Email Source
      • Excel Workbook Source
      • File Systems Item Source
      • Fixed Length File Source
      • PDF Form Source
      • Report Source
      • SQL Query Source
      • XML/JSON File Source
    • Transformations
      • Introducing Transformations
      • Aggregate Transformation
      • Constant Value Transformation
      • Data Cleanse Transformation
      • Denormalize Transformation
      • Distinct Transformation
      • Database Lookup Transformation
      • Expression Transformation
      • File Lookup Transformation
      • Filter Transformation
      • Join Transformation
      • List Lookup Transformation
      • Merge Transformation
      • Normalize Transformation
      • Passthru Transformation
      • Reconcile Transformation
      • Route Transformation
      • Sequence Generator Transformation
      • Sort Transformation
      • Sources as Transformations
      • Subflow Transformation
      • SQL Statement Lookup Transformation
      • Switch Transformation
      • Tree Join Transformation
      • Tree Transform
      • Union Transformation
    • Destinations
      • Setting Up Destinations
      • Database Table Destination
      • Delimited File Destination
      • Excel Workbook Destination
      • Fixed Length File Destination
      • SQL Statement Destination
      • XML/JSON File Destination
    • Data Logging and Profiling
      • Creating Data Profile
      • Creating Field Profile
      • Data Quality Mode
      • Record Level Log
      • Using Data Quality Rules in Astera
    • Database Write Strategies
      • Database Diff Processor
      • Data Driven Write Strategy
      • Dimension Loader - Database Write
      • Source Diff Processor
    • Text Processors
      • Delimited Parser
      • Delimited Serializer
      • Fixed Length Parser
      • Fixed Length Serializer
      • Language Parser
      • XML JSON Parser
      • XML JSON Serializer
    • Data Warehouse
      • Fact Table Loader
      • Dimension Table Loader
  • WORKFLOWS
    • What Are Workflows?
    • Using the Workflow Designer
    • Creating Workflows in Astera
    • Decision Task
    • EDI Acknowledgement Task
    • File System Task
    • File Transfer Task
    • OR Task
    • Run Dataflow Task
    • Run Program Task
    • Run SQL File Task
    • Run SQL Script Task
    • Run Workflow Task
    • Send Mail Task
    • Workflows with a Dynamic Destination Path
    • Customizing Workflows with Parameters
    • GPG-Integrated File Decryption in Astera
  • Subflows
    • Using Subflows in Astera
  • Functions
    • Introducing Function Transformations
    • Custom Functions
    • Logical
      • Coalesce (Any value1, Any value2)
      • IsNotNull (AnyValue)
      • IsRealNumber (AnyValue)
      • IsValidSqlDate (Date)
      • IsDate (AnyValue)
      • If (Boolean)
      • If (DateTime)
      • If (Double)
      • Exists
      • If (Int64)
      • If (String)
      • IsDate (str, strformat)
      • IsInteger (AnyValue)
      • IsNullOrWhitespace (StringValue)
      • IsNullorEmpty (StringValue)
      • IsNull (AnyValue)
      • IsNumeric (AnyValue)
    • Conversion
      • GetDateComponents (DateWithOffset)
      • ParseDate (Formats, Str)
      • GetDateComponents (Date)
      • HexToInteger (Any Value)
      • ToInteger (Any value)
      • ToDecimal (Any value)
      • ToReal (Any value)
      • ToDate (String dateStr)
      • TryParseDate (String, UnknownDate)
      • ToString (Any value)
      • ToString (DateValue)
      • ToString (Any data, String format)
    • Math
      • Abs (Double)
      • Abs (Decimal)
      • Ceiling (Real)
      • Ceiling(Decimal)
      • Floor (Decimal)
      • Floor (Real)
      • Max (Decimal)
      • Max (Date)
      • Min (Decimal)
      • Min (Date)
      • Max (Real)
      • Max (Integer)
      • Min (Real)
      • Pow (BaseExponent)
      • Min (Integer)
      • RandomReal (Int)
      • Round (Real)
      • Round (Real Integer)
      • Round (Decimal Integer)
      • Round (Decimal)
    • Financial
      • DDB
      • FV
      • IPmt
      • IPmt (FV)
      • Pmt
      • Pmt (FV)
      • PPmt
      • PPmt (FV)
      • PV (FV)
      • Rate
      • Rate (FV)
      • SLN
      • SYD
    • String
      • Center (String)
      • Chr (IntAscii)
      • Asc (String)
      • AddCDATAEnvelope
      • Concatenate (String)
      • ContainsAnyChar (String)
      • Contains (String)
      • Compact (String)
      • Find (Int64)
      • EndsWith (String)
      • FindIntStart (Int32)
      • Extract (String)
      • GetFindCount (Int64)
      • FindLast (Int64)
      • GetDigits (String)
      • GetLineFeed
      • Insert (String)
      • IsAlpha
      • GetToken
      • IndexOf
      • IsBlank
      • IsLower
      • IsUpper
      • IsSubstringOf
      • Length (String)
      • LeftOf (String)
      • Left (String)
      • IsValidName
      • Mid (String)
      • PadLeft
      • Mid (String Chars)
      • LSplit (String)
      • PadRight
      • ReplaceAllSpecialCharsWithSpace
      • RemoveChars (String str, StringCharsToRemove)
      • ReplaceLast
      • RightAlign
      • Reverse
      • Right (String)
      • RSplit (String)
      • SplitStringMultipleRecords
      • SplitStringMultipleRecords (2 Separators)
      • SplitString (3 separators)
      • SplitString
      • SplitStringMultipleRecords (3 Separators)
      • Trim
      • SubString (NoOfChars)
      • StripHtml
      • Trim (Start)
      • TrimExtraMiddleSpace
      • TrimEnd
      • PascalCaseWithSpace (String str)
      • Trim (String str)
      • ToLower(String str)
      • ToProper(String str)
      • ToUpper (String str)
      • Substring (String str, Integer startAt)
      • StartsWith (String str, String value)
      • RemoveAt (String str, Integer startAt, Integer noofChars)
      • Proper (String str)
      • Repeat (String str, Integer count)
      • ReplaceAll (String str, String lookFor, String replaceWith)
      • ReplaceFirst (String str, String lookFor, String replaceWith)
      • RightOf (String str, String lookFor)
      • RemoveChars (String str, String charsToRemove)
      • SplitString (String str, String separator1, String separator2)
    • Date Time
      • AddMinutes (DateTime)
      • AddDays (DateTimeOffset)
      • AddDays (DateTime)
      • AddHours (DateTime)
      • AddSeconds (DateTime)
      • AddMonths (DateTime)
      • AddMonths (DateTimeOffset)
      • AddMinutes (DateTimeOffset)
      • AddSeconds (DateTimeOffset)
      • AddYears (DateTimeOffset)
      • AddYears (DateTime)
      • Age (DateTime)
      • Age (DateTimeOffset)
      • CharToSeconds (Str)
      • DateDifferenceDays (DateTimeOffset)
      • DateDifferenceDays (DateTime)
      • DateDifferenceHours (DateTimeOffset)
      • DateDifferenceHours (DateTime)
      • DateDifferenceMonths (DateTimeOffset)
      • DateDifferenceMonths (DateTime)
      • DatePart (DateTimeOffset)
      • DatePart (DateTime)
      • DateDifferenceYears (DateTimeOffset)
      • DateDifferenceYears (DateTime)
      • Month (DateTime)
      • Month (DateTimeOffset)
      • Now
      • Quarter (DateTime)
      • Quarter (DateTimeOffset)
      • Second (DateTime)
      • Second (DateTimeOffset)
      • SecondsToChar (String)
      • TimeToInteger (DateTime)
      • TimeToInteger (DateTimeOffset)
      • ToDate Date (DateTime)
      • ToDate DateTime (DateTime)
      • ToDateString (DateTime)
      • ToDateTimeOffset-Date (DateTimeOffset)
      • ToDate DateTime (DateTimeOffset)
      • ToDateString (DateTimeOffset)
      • Today
      • ToLocal (DateTime)
      • ToJulianDate (DateTime)
      • ToJulianDayNumber (DateTime)
      • ToTicks (Date dateTime)
      • ToTicks (DateTimeWithOffset dateTime)
      • ToUnixEpoc (Date dateTime)
      • ToUtc (Date dateTime)
      • UnixTimeStampToDateTime (Real unixTimeStamp)
      • UtcNow ()
      • Week (Date dateTime)
      • Week (DateTimeWithOffset dateTime)
      • Year (Date dateTime)
      • Year (DateTimeWithOffset dateTime)
      • DateToJulian (Date dateTime, Integer length)
      • DateTimeOffsetUtcNow ()
      • DateTimeOffsetNow ()
      • Day (DateTimeWithOffset dateTime)
      • Day (Date dateTime)
      • DayOfWeekStr (DateTimeWithOffset dateTime)
      • DayOfWeek (DateTimeWithOffset dateTime)
      • DayOfWeek (Date dateTime)
      • DateToJulian (DateTimeWithOffset dateTime, Integer length)
      • DayOfWeekStr (Date dateTime)
      • FromJulianDate (Real julianDate)
      • DayOfYear (Date dateTime)
      • DaysInMonth(Integer year, Integer month)
      • DayOfYear (DateTimeWithOffset dateTime)
      • FromUnixEpoc
      • FromJulianDayNumber (Integer julianDayNumber)
      • FromTicksUtc(Integer ticks)
      • FromTicksLocal(Integer ticks)
      • Hour (Date dateTime)
      • Hour (DateTimeWithOffset dateTime)
      • Minute (Date dateTime)
      • JulianToDate (String julianDate)
      • Minute (DateTimeWithOffset dateTime)
      • DateToIntegerYYYYMMDD (DateTimeWithOffset dateTime)
      • DateToIntegerYYYYMMDD (Date dateTime)
    • Files
      • AppendTextToFile (String filePath, String text)
      • CopyFile (String sourceFilePath, String destFilePath, Boolean overWrite)
      • CreateDateTime (String filePath)
      • DeleteFile (String filePath)
      • DirectoryExists (String filePath)
      • FileExists (String filePath)
      • FileLength (String filePath)
      • FileLineCount (String filePath)
      • GetDirectory (String filePath)
      • GetEDIFileMetaData (String filePath)
      • GetExcelWorksheets (String excelFilePath)
      • GetFileExtension (String filePath)
      • GetFileInfo (String filePath)
      • GetFileName (String filePath)
      • GetFileNameWithoutExtension (String filePath)
      • LastUpdateDateTime (String filePath)
      • MoveFile (String filePath, String newDirectory)
      • ReadFileBytes (String filePath)
      • ReadFileFirstLine (String filePath)
      • ReadFileText (String filePath)
      • ReadFileText (String filePath, String codePage)
      • WriteBytesToFile (String filePath, ByteArray bytes)
      • WriteTextToFile (String filePath, String text)
    • Date Time With Offset
      • ToDateTimeOffsetFromDateTime (dateTime String)
      • ToUtc (DateTimeWithOffset)
      • ToDateTimeOffsetFromDateTime
      • ToDateTimeOffset (String dateTimeOffsetStr)
      • ToDateTimeFromDateTimeOffset
    • GUID
      • NewGuid
    • Encoding
      • ToBytes
      • FromBytes
      • UrlEncode
      • UrlDecode
    • Regular Expressions
      • ReplaceRegEx
      • ReplaceRegEx (Integer StartAt)
    • TimeSpan
      • Minutes
      • Hours
      • Days
      • Milliseconds
    • Matching
      • Soundex
      • DoubleMetaphone
      • RefinedSoundex
  • Report Model
    • User Guide
      • Report Model Tutorial
    • Report Model Interface
      • Field Properties Panel
      • Region Properties Panel
      • Report Browser
      • Report Options
    • Use Cases
      • Applying Pattern to Line
      • Auto Creating Data Regions and Fields
      • Auto-Parsing
      • Creating Multi-Column Data Regions
      • Floating Patterns and Floating Fields
      • How To Work With PDF Scaling Factor in a Report Model
      • Line Count
      • Pattern Count
      • Pattern is a Regular Expression
    • Exporting Options
      • Exporting a Report Model
      • Exporting Report Model to a Dataflow
    • Miscellaneous
      • Importing Monarch Models
      • Microsoft Word and Rich Text Format Support
      • Working With Problematic PDF Files
  • API Flows
    • API Consumption
      • Consume
        • REST API Browser
        • Making HTTP Requests Through REST API Browser
        • Using REST Client Outside of the Scope of the Project
      • Authorize
        • Authorizing ActiveCampaign API in Astera
        • Authorizing Astera Server APIs
        • Authorizing Avaza APIs in Astera
        • Authorizing Facebook APIs in Astera
        • Authorizing QuickBooks API in Astera
        • Authorizing Square API in Astera
        • Open APIs - Configuration Details
  • Project Management
    • Project Management
      • Astera's Project Explorer
      • Connecting to Source Control
      • Deployment
      • Server Monitoring and Job Management
    • Job Scheduling
      • Scheduling Jobs on the Server
      • Job Monitor
  • Use Cases
    • End-to-End Use Cases
      • Data Integration
        • Using Astera to Create and Orchestrate an ETL Process for Partner Onboarding
      • Data Warehousing
        • Building a Data Warehouse - A Step-By-Step Approach
      • Data Extraction
        • Reusing The Extraction Template for Similar Layout Files
  • Connectors
    • Connecting to Amazon Aurora Database
    • Connecting to Amazon RDS Databases
    • Connecting to Amazon Redshift Database
    • Connecting to Cloud Storage
    • Connecting to Google Cloud SQL in Astera
    • Connecting to MariaDB Database
    • Connecting to Microsoft Azure Databases
    • Connecting to MySQL Database
    • Connecting to Netezza Database
    • Connecting to Oracle Database
    • Connecting to PostgreSQL in Astera
    • Connecting to Salesforce Database
    • Connecting to Salesforce - Legacy Database
    • Connecting to SAP HANA Database
    • Connecting to Snowflake Database
    • Connecting to Vertica Database
    • Setting Up IBM DB2 iSeries Connectivity in Astera
  • Miscellaneous
    • Cloud Deployment
      • Deploying Astera on Amazon Web Services
      • Deploying Astera on Microsoft Azure Cloud
      • Deploying Astera on Oracle Cloud
    • Context Information
    • Pushdown Mode
    • Role Based Access Control in Astera
    • Safe Mode
    • Server Command Line Utility
    • SmartMatch Feature
    • Synonym Dictionary File
    • Updating Your License in Astera
    • Using Dynamic Layout/Template Mapping in Astera
    • Using Output Variables in Astera
    • Using the Data Source Browser in Astera
  • Best Practices
    • Astera Best Practices - Dataflows
    • Overview of Cardinality in Data Modeling
    • Cardinality Errors FAQs
Powered by GitBook

© Copyright 2025, Astera Software

On this page
  1. Dataflows
  2. Data Logging and Profiling

Using Data Quality Rules in Astera

PreviousRecord Level LogNextDatabase Write Strategies

Last updated 9 months ago

The Data Quality Rules object found in the Data Profiling section of the Toolbox is used to apply one or more conditions, called Data Quality Rules, against incoming records.

Records that do not meet the data quality rule criteria will be assigned the ‘Error’ status and may be optionally excluded from processing by the downstream objects.

Data Quality Rules is a record-level component which means that it does not require the entire dataset to flow through it. In other words, you can map a single or a couple of fields to the Data Quality Rules component to set up quality validation criteria and the transformed records can be mapped further in the dataflow.

Using the Data Quality Rules in a Dataflow

Let’s understand the application and usage of Data Quality Rules with the following example.

Here we have sample data of employees of a fictitious organization which we have retrieved using an Excel Workbook Source.

If we look at the preview of the Employee_Report dataset, the values in the SalariedFlag column specify whether an employee is salaried in terms of 0 and 1.

  • 1 = The employee is salaried

  • 0 = The employee is non-salaried and therefore is eligible for overtime

We can apply data quality rules to these values and identify which employees are not salaried and therefore, are eligible for overtime. The Data Quality Rules object will process all records and those that do not match the criteria will be returned with an error.

This means that in this example, the salaried employees with the salary flag ‘True’ will return an error, whereas the records of employees with the salary flag ‘False’ will pass the data quality rule.

  1. To do this, drag the Data Quality Rules object from the Data Profiling section in the Toolbox and drop it onto the dataflow designer.

  1. Now, map the SalariedFlag field to the Data Quality Rules object.

  1. Right-click on the Data Quality Rules object and select Properties from the context menu.

  1. This will open a new window. This is the Layout Builder, where you can see the ‘SalariedFlag’ field we have mapped from our source.

  1. Click Next to proceed to the Data Quality Rules window.

Let’s explore these options one by one:

  • Description: The Description field contains the name or description of the rule. By default, the rules are termed as Rule1, Rule2, and so on, depending on the number of rules you add. But you can also rename the rules for better understanding and convenience.

In our case, as we want to set data quality criteria to identify non-salaried employees, we can rename the rule as “NonSalariedEmployeesRule.”

  • Attach rule to the field: This is a drop-down list using which you can attach a rule to a particular field. You can see that there is a root node named Data Quality Rules.

Listed within the Data Quality Rules node are the fields mapped to the Data Quality Rules object. Here we have only one field mapped to which we want to apply this rule.

In case you want to apply a rule to the whole dataset, you can simply double-click on the Data Quality Rules root node and the rule will be applied to all fields mapped to the Data Quality Rules object.

In this case, we will map the rule to the SalariedFlag field.

  • Expression box: This is where you can type in the expression for your rule.

In this example, we want to validate records with the Salary Flag ‘False.’ To do this we will write the expression: ‘SalariedFlag = 0’ in the Expression field.

Observe that, simultaneously, Astera shows you a compile status of your expression below the expression box.

It says ‘Successful’ so we can click OK. Alternatively, it will give you an error if the expression is incorrect and you will have to correct the expression before clicking OK.

  • Show Message: We can also write a message to show up with the errors, which can also be written to the error log. Let’s write a message: ‘Salaried employees are not eligible for overtime.’

This message will help identify why a particular record was marked erroneous. And in case multiple rules are applied, the message will point out which rule was not qualified by a particular record.

Next, we have two checkboxes:

  • Active – to activate a rule.

  • Is Error – when this is checked, all records that return an error will not be written to a target. This means that only the records that have passed the data quality rule will flow further in the dataflow pipeline.

However, if we uncheck this option, it will automatically check the Warning checkbox. This will return the records that failed to match the rule with a warning and will be written to a target.

In this case, let’s keep the errors as errors by checking the Is Error box.

Now we have set up a data quality rule.

Now, let’s look at the preview. Right-click on the Data Quality Rules object and select Preview Output from the context menu.

You can see that the records that have matched the rule, the records with a ‘False’ salary flag, have been validated. On the other hand, the records that failed to match the rule, the records with the ‘True’ flag, have returned an error, denoted by a red warning sign.

If you move the cursor over this warning sign, it will show the error message in the tooltip.

This is especially useful in cases where you have applied more than one rule and you want to track which records have failed to match which rule or when you want to store the erroneous records in an error log.

Now that we have validated the records against our data quality rule, we can map it to a target which is a Delimited File Destination in this case.

We will name this file ‘Employees eligible for overtime,’ so the records of employees with the ‘False’ salaried flag will be passed through the Data Quality Rules object and consequently be mapped to the destination file. Let’s do the mapping.

Now, if we open the Properties window of the destination file, you can see the option, Do Not Process Records With Errors on the last window. It is checked by default in all target formats in Astera.

Therefore, when we run this dataflow, all records that have matched the data quality rule will be written to the destination file, whereas records that failed to match the rule and returned an error will be omitted.

The records that fail to match the data quality rule can be written and stored in a separate error log.

Here, we will set rules or the data quality criteria. Click this button to add a new rule. Once a new rule is added, the options on this window will activate and the rule will be added to the grid.

Or you can click this button to enter the Expression Builder window where you can choose an expression from Astera's library of built-in expressions, or you can write one of your own.

You can add as many rules as you want by clicking this button and similarly, you can also delete a rule by pointing it in the grid and then right-click > Delete. In this example, we will work with a single rule that has been set, so let’s go ahead and click OK.