Astera Data Stack
Version 8
Version 8
  • Welcome to Astera Data Stack Documentation
  • Release Notes
    • Astera 8.0 - What's New, What's Fixed, and What's Improved
    • Astera 8.0 - Known Issues
    • Astera 8.1 - Release Notes
    • Astera 8.2 Release Notes
    • Astera 8.3 Release Notes
    • Astera 8.4 Release Notes
    • Astera 8.5 Release Notes
  • Getting Started
    • Astera 8 - Important Considerations
    • Astera 8 - System Requirements
    • Configuring the Server
    • Connecting to a Different Astera Server from the Lean Client
    • Connecting to an Astera Server using Lean Client
    • How to Build a Cluster Database and Create a Repository
    • How to Login from Lean Client
    • Setting up a Server Certificate (.pfx) File in a New Environment
    • Installing Client and Server Applications
    • Licensing Model in Astera 8
    • Migrating from Astera 7.x to Astera 8
    • UI Walkthrough - Astera 8.0
    • User Roles and Access Control
  • Dataflows
    • Sources
      • Data Providers and File Formats Supported in Astera
      • Setting Up Sources
      • COBOL File Source
      • Database Table Source
      • Data Model Query Source
      • Delimited File Source
      • Email Source
      • Excel Workbook Source
      • File Systems Item Source
      • Fixed Length File Source
      • PDF Form Source
      • Report Source
      • SQL Query Source
      • XML/JSON File Source
    • Transformations
      • Introducing Transformations
      • Aggregate Transformation
      • Constant Value Transformation
      • Data Cleanse Transformation
      • Denormalize Transformation
      • Distinct Transformation
      • Database Lookup Transformation
      • Expression Transformation
      • File Lookup Transformation
      • Filter Transformation
      • Join Transformation
      • List Lookup Transformation
      • Merge Transformation
      • Normalize Transformation
      • Passthru Transformation
      • Reconcile Transformation
      • Route Transformation
      • Sequence Generator Transformation
      • Sort Transformation
      • Sources as Transformations
      • Subflow Transformation
      • SQL Statement Lookup Transformation
      • Switch Transformation
      • Tree Join Transformation
      • Tree Transform
      • Union Transformation
    • Destinations
      • Setting Up Destinations
      • Database Table Destination
      • Delimited File Destination
      • Excel Workbook Destination
      • Fixed Length File Destination
      • SQL Statement Destination
      • XML/JSON File Destination
    • Data Logging and Profiling
      • Creating Data Profile
      • Creating Field Profile
      • Data Quality Mode
      • Record Level Log
      • Using Data Quality Rules in Astera
    • Database Write Strategies
      • Database Diff Processor
      • Data Driven Write Strategy
      • Dimension Loader - Database Write
      • Source Diff Processor
    • Text Processors
      • Delimited Parser
      • Delimited Serializer
      • Fixed Length Parser
      • Fixed Length Serializer
      • Language Parser
      • XML JSON Parser
      • XML JSON Serializer
    • Data Warehouse
      • Fact Table Loader
      • Dimension Table Loader
  • WORKFLOWS
    • What Are Workflows?
    • Using the Workflow Designer
    • Creating Workflows in Astera
    • Decision Task
    • EDI Acknowledgement Task
    • File System Task
    • File Transfer Task
    • OR Task
    • Run Dataflow Task
    • Run Program Task
    • Run SQL File Task
    • Run SQL Script Task
    • Run Workflow Task
    • Send Mail Task
    • Workflows with a Dynamic Destination Path
    • Customizing Workflows with Parameters
    • GPG-Integrated File Decryption in Astera
  • Subflows
    • Using Subflows in Astera
  • Functions
    • Introducing Function Transformations
    • Custom Functions
    • Logical
      • Coalesce (Any value1, Any value2)
      • IsNotNull (AnyValue)
      • IsRealNumber (AnyValue)
      • IsValidSqlDate (Date)
      • IsDate (AnyValue)
      • If (Boolean)
      • If (DateTime)
      • If (Double)
      • Exists
      • If (Int64)
      • If (String)
      • IsDate (str, strformat)
      • IsInteger (AnyValue)
      • IsNullOrWhitespace (StringValue)
      • IsNullorEmpty (StringValue)
      • IsNull (AnyValue)
      • IsNumeric (AnyValue)
    • Conversion
      • GetDateComponents (DateWithOffset)
      • ParseDate (Formats, Str)
      • GetDateComponents (Date)
      • HexToInteger (Any Value)
      • ToInteger (Any value)
      • ToDecimal (Any value)
      • ToReal (Any value)
      • ToDate (String dateStr)
      • TryParseDate (String, UnknownDate)
      • ToString (Any value)
      • ToString (DateValue)
      • ToString (Any data, String format)
    • Math
      • Abs (Double)
      • Abs (Decimal)
      • Ceiling (Real)
      • Ceiling(Decimal)
      • Floor (Decimal)
      • Floor (Real)
      • Max (Decimal)
      • Max (Date)
      • Min (Decimal)
      • Min (Date)
      • Max (Real)
      • Max (Integer)
      • Min (Real)
      • Pow (BaseExponent)
      • Min (Integer)
      • RandomReal (Int)
      • Round (Real)
      • Round (Real Integer)
      • Round (Decimal Integer)
      • Round (Decimal)
    • Financial
      • DDB
      • FV
      • IPmt
      • IPmt (FV)
      • Pmt
      • Pmt (FV)
      • PPmt
      • PPmt (FV)
      • PV (FV)
      • Rate
      • Rate (FV)
      • SLN
      • SYD
    • String
      • Center (String)
      • Chr (IntAscii)
      • Asc (String)
      • AddCDATAEnvelope
      • Concatenate (String)
      • ContainsAnyChar (String)
      • Contains (String)
      • Compact (String)
      • Find (Int64)
      • EndsWith (String)
      • FindIntStart (Int32)
      • Extract (String)
      • GetFindCount (Int64)
      • FindLast (Int64)
      • GetDigits (String)
      • GetLineFeed
      • Insert (String)
      • IsAlpha
      • GetToken
      • IndexOf
      • IsBlank
      • IsLower
      • IsUpper
      • IsSubstringOf
      • Length (String)
      • LeftOf (String)
      • Left (String)
      • IsValidName
      • Mid (String)
      • PadLeft
      • Mid (String Chars)
      • LSplit (String)
      • PadRight
      • ReplaceAllSpecialCharsWithSpace
      • RemoveChars (String str, StringCharsToRemove)
      • ReplaceLast
      • RightAlign
      • Reverse
      • Right (String)
      • RSplit (String)
      • SplitStringMultipleRecords
      • SplitStringMultipleRecords (2 Separators)
      • SplitString (3 separators)
      • SplitString
      • SplitStringMultipleRecords (3 Separators)
      • Trim
      • SubString (NoOfChars)
      • StripHtml
      • Trim (Start)
      • TrimExtraMiddleSpace
      • TrimEnd
      • PascalCaseWithSpace (String str)
      • Trim (String str)
      • ToLower(String str)
      • ToProper(String str)
      • ToUpper (String str)
      • Substring (String str, Integer startAt)
      • StartsWith (String str, String value)
      • RemoveAt (String str, Integer startAt, Integer noofChars)
      • Proper (String str)
      • Repeat (String str, Integer count)
      • ReplaceAll (String str, String lookFor, String replaceWith)
      • ReplaceFirst (String str, String lookFor, String replaceWith)
      • RightOf (String str, String lookFor)
      • RemoveChars (String str, String charsToRemove)
      • SplitString (String str, String separator1, String separator2)
    • Date Time
      • AddMinutes (DateTime)
      • AddDays (DateTimeOffset)
      • AddDays (DateTime)
      • AddHours (DateTime)
      • AddSeconds (DateTime)
      • AddMonths (DateTime)
      • AddMonths (DateTimeOffset)
      • AddMinutes (DateTimeOffset)
      • AddSeconds (DateTimeOffset)
      • AddYears (DateTimeOffset)
      • AddYears (DateTime)
      • Age (DateTime)
      • Age (DateTimeOffset)
      • CharToSeconds (Str)
      • DateDifferenceDays (DateTimeOffset)
      • DateDifferenceDays (DateTime)
      • DateDifferenceHours (DateTimeOffset)
      • DateDifferenceHours (DateTime)
      • DateDifferenceMonths (DateTimeOffset)
      • DateDifferenceMonths (DateTime)
      • DatePart (DateTimeOffset)
      • DatePart (DateTime)
      • DateDifferenceYears (DateTimeOffset)
      • DateDifferenceYears (DateTime)
      • Month (DateTime)
      • Month (DateTimeOffset)
      • Now
      • Quarter (DateTime)
      • Quarter (DateTimeOffset)
      • Second (DateTime)
      • Second (DateTimeOffset)
      • SecondsToChar (String)
      • TimeToInteger (DateTime)
      • TimeToInteger (DateTimeOffset)
      • ToDate Date (DateTime)
      • ToDate DateTime (DateTime)
      • ToDateString (DateTime)
      • ToDateTimeOffset-Date (DateTimeOffset)
      • ToDate DateTime (DateTimeOffset)
      • ToDateString (DateTimeOffset)
      • Today
      • ToLocal (DateTime)
      • ToJulianDate (DateTime)
      • ToJulianDayNumber (DateTime)
      • ToTicks (Date dateTime)
      • ToTicks (DateTimeWithOffset dateTime)
      • ToUnixEpoc (Date dateTime)
      • ToUtc (Date dateTime)
      • UnixTimeStampToDateTime (Real unixTimeStamp)
      • UtcNow ()
      • Week (Date dateTime)
      • Week (DateTimeWithOffset dateTime)
      • Year (Date dateTime)
      • Year (DateTimeWithOffset dateTime)
      • DateToJulian (Date dateTime, Integer length)
      • DateTimeOffsetUtcNow ()
      • DateTimeOffsetNow ()
      • Day (DateTimeWithOffset dateTime)
      • Day (Date dateTime)
      • DayOfWeekStr (DateTimeWithOffset dateTime)
      • DayOfWeek (DateTimeWithOffset dateTime)
      • DayOfWeek (Date dateTime)
      • DateToJulian (DateTimeWithOffset dateTime, Integer length)
      • DayOfWeekStr (Date dateTime)
      • FromJulianDate (Real julianDate)
      • DayOfYear (Date dateTime)
      • DaysInMonth(Integer year, Integer month)
      • DayOfYear (DateTimeWithOffset dateTime)
      • FromUnixEpoc
      • FromJulianDayNumber (Integer julianDayNumber)
      • FromTicksUtc(Integer ticks)
      • FromTicksLocal(Integer ticks)
      • Hour (Date dateTime)
      • Hour (DateTimeWithOffset dateTime)
      • Minute (Date dateTime)
      • JulianToDate (String julianDate)
      • Minute (DateTimeWithOffset dateTime)
      • DateToIntegerYYYYMMDD (DateTimeWithOffset dateTime)
      • DateToIntegerYYYYMMDD (Date dateTime)
    • Files
      • AppendTextToFile (String filePath, String text)
      • CopyFile (String sourceFilePath, String destFilePath, Boolean overWrite)
      • CreateDateTime (String filePath)
      • DeleteFile (String filePath)
      • DirectoryExists (String filePath)
      • FileExists (String filePath)
      • FileLength (String filePath)
      • FileLineCount (String filePath)
      • GetDirectory (String filePath)
      • GetEDIFileMetaData (String filePath)
      • GetExcelWorksheets (String excelFilePath)
      • GetFileExtension (String filePath)
      • GetFileInfo (String filePath)
      • GetFileName (String filePath)
      • GetFileNameWithoutExtension (String filePath)
      • LastUpdateDateTime (String filePath)
      • MoveFile (String filePath, String newDirectory)
      • ReadFileBytes (String filePath)
      • ReadFileFirstLine (String filePath)
      • ReadFileText (String filePath)
      • ReadFileText (String filePath, String codePage)
      • WriteBytesToFile (String filePath, ByteArray bytes)
      • WriteTextToFile (String filePath, String text)
    • Date Time With Offset
      • ToDateTimeOffsetFromDateTime (dateTime String)
      • ToUtc (DateTimeWithOffset)
      • ToDateTimeOffsetFromDateTime
      • ToDateTimeOffset (String dateTimeOffsetStr)
      • ToDateTimeFromDateTimeOffset
    • GUID
      • NewGuid
    • Encoding
      • ToBytes
      • FromBytes
      • UrlEncode
      • UrlDecode
    • Regular Expressions
      • ReplaceRegEx
      • ReplaceRegEx (Integer StartAt)
    • TimeSpan
      • Minutes
      • Hours
      • Days
      • Milliseconds
    • Matching
      • Soundex
      • DoubleMetaphone
      • RefinedSoundex
  • Report Model
    • User Guide
      • Report Model Tutorial
    • Report Model Interface
      • Field Properties Panel
      • Region Properties Panel
      • Report Browser
      • Report Options
    • Use Cases
      • Applying Pattern to Line
      • Auto Creating Data Regions and Fields
      • Auto-Parsing
      • Creating Multi-Column Data Regions
      • Floating Patterns and Floating Fields
      • How To Work With PDF Scaling Factor in a Report Model
      • Line Count
      • Pattern Count
      • Pattern is a Regular Expression
    • Exporting Options
      • Exporting a Report Model
      • Exporting Report Model to a Dataflow
    • Miscellaneous
      • Importing Monarch Models
      • Microsoft Word and Rich Text Format Support
      • Working With Problematic PDF Files
  • API Flows
    • API Consumption
      • Consume
        • REST API Browser
        • Making HTTP Requests Through REST API Browser
        • Using REST Client Outside of the Scope of the Project
      • Authorize
        • Authorizing ActiveCampaign API in Astera
        • Authorizing Astera Server APIs
        • Authorizing Avaza APIs in Astera
        • Authorizing Facebook APIs in Astera
        • Authorizing QuickBooks API in Astera
        • Authorizing Square API in Astera
        • Open APIs - Configuration Details
  • Project Management
    • Project Management
      • Astera's Project Explorer
      • Connecting to Source Control
      • Deployment
      • Server Monitoring and Job Management
    • Job Scheduling
      • Scheduling Jobs on the Server
      • Job Monitor
  • Use Cases
    • End-to-End Use Cases
      • Data Integration
        • Using Astera to Create and Orchestrate an ETL Process for Partner Onboarding
      • Data Warehousing
        • Building a Data Warehouse - A Step-By-Step Approach
      • Data Extraction
        • Reusing The Extraction Template for Similar Layout Files
  • Connectors
    • Connecting to Amazon Aurora Database
    • Connecting to Amazon RDS Databases
    • Connecting to Amazon Redshift Database
    • Connecting to Cloud Storage
    • Connecting to Google Cloud SQL in Astera
    • Connecting to MariaDB Database
    • Connecting to Microsoft Azure Databases
    • Connecting to MySQL Database
    • Connecting to Netezza Database
    • Connecting to Oracle Database
    • Connecting to PostgreSQL in Astera
    • Connecting to Salesforce Database
    • Connecting to Salesforce - Legacy Database
    • Connecting to SAP HANA Database
    • Connecting to Snowflake Database
    • Connecting to Vertica Database
    • Setting Up IBM DB2 iSeries Connectivity in Astera
  • Miscellaneous
    • Cloud Deployment
      • Deploying Astera on Amazon Web Services
      • Deploying Astera on Microsoft Azure Cloud
      • Deploying Astera on Oracle Cloud
    • Context Information
    • Pushdown Mode
    • Role Based Access Control in Astera
    • Safe Mode
    • Server Command Line Utility
    • SmartMatch Feature
    • Synonym Dictionary File
    • Updating Your License in Astera
    • Using Dynamic Layout/Template Mapping in Astera
    • Using Output Variables in Astera
    • Using the Data Source Browser in Astera
  • Best Practices
    • Astera Best Practices - Dataflows
    • Overview of Cardinality in Data Modeling
    • Cardinality Errors FAQs
Powered by GitBook

© Copyright 2025, Astera Software

On this page
  • Overview
  • How to Work with Aggregate Transformation
  1. Dataflows
  2. Transformations

Aggregate Transformation

PreviousIntroducing TransformationsNextConstant Value Transformation

Last updated 9 months ago

Overview

The Aggregate transformation object provides the functionality to create aggregations of your dataset, using aggregate functions such as Sum, Count, First, Last, Min, Max, Average, Var, or Standard Deviation. The dataset can be split into groups so that the aggregate value(s) can be generated for the group instead of the whole dataset. For example, calculate product count by month of year, or get average sales price by region and year.

Use Case

In this scenario, we have Products data stored in a CSV file. The source file contains information such as ProductID, Supplier ID, UnitPrice of the various products, QuantityPerUnit of products available, etc. We want to derive the following information from our source data:

  1. Number of products per category

  2. Total price of all the products per category

  3. Minimum price per category

  4. Maximum price per category

We will use the Aggregate Transformation object to derive the required information.

How to Work with Aggregate Transformation

  1. To work with the Aggregate Transformation, drag and drop the Aggregate Transformation object from Toolbox > Transformations > Aggregate.

  1. Right-click on the transformation object and select Properties. The Layout Builder window will now open.

  1. Here, you can write the names of the fields that you want to map to the transformation object in the Name column and specify the relevant Aggregate Functions for them.

For this case:

  • CategoryID: We will select the Group-By option from the Aggregate Function drop-down list for this field as we want to group the records based on the available product categories.

  • ProductID: For this field, we will select the Aggregate Function Count, in order to calculate the number of products per category.

  • UnitPrice: We will map this field thrice.

    • To calculate TotalPricePerCategory, select the function Sum function.

    • To calculate MaxPricePerCategory, select the Max function.

    • To calculate MinPricePerCategory, select the Min function.

  1. Click on Next. The Aggregate Transformation Properties window will now open.

There are three sorting options in Aggregate transformation:

  • Incoming data is pre-sorted on group by fields: This option Aggregate requires data to be sorted by the specified Group-By field.

  • Sort Incoming data before building aggregate: This option will first sort the incoming data, then build its aggregate.

  • Build aggregate using unsorted data: This option will build aggregate using the incoming data  whether it is sorted or not.

  1. Click on Next. The Config Parameters window will now open, where you can further configure and define parameters for the Aggregate transformation.

  1. Click Next. This is the General Options window. Click OK.

  • General Options Window: This window shares options common to most objects in the dataflow.

  • Clear Incoming Record Messages: When this option is checked, any messages coming in from objects preceding the current object will be cleared. This is useful when you need to capture record messages in the log generated by the current object and filter out any record messages generated earlier in the dataflow.

  • Do Not Process Records with Errors: When this option is checked, records with errors will not be output by the object. When this option is off, records with errors will be output by the object, and a record message will be attached to the record. This record message can then be fed into downstream objects in the dataflow, for example, a destination file that will capture record messages or a log that will capture messages and collect statistics as well.

  • The Comments input allows you to enter comments associated with this object.

  1. After you have configured the properties, click OK.

  2. You will see the fields in the object that were added in the Layout Builder window.

  1. Map the data fields from the source object to the transformation object. You can auto-map the entire dataset from the source to the transformation object, or only map selected fields that you want to work with. In this case, we will map CategoryID, ProductID, and UnitPrice as those are the fields we want to find aggregations for.

Note: The UnitPrice field has been mapped three times as these will determine TotalPricePerCategory, MaximumPricePerCategory, and MinimumPriceperCategory.

  1. Right-click on the Aggregate transformation object and click Preview Output.

  1. You will see that the specified Aggregate Functions have been applied.

From the sources section in the Toolbox, drag and drop a object to the dataflow designer.

Delimited File Source