Astera Data Stack
Version 8
Version 8
  • Welcome to Astera Data Stack Documentation
  • Release Notes
    • Astera 8.0 - What's New, What's Fixed, and What's Improved
    • Astera 8.0 - Known Issues
    • Astera 8.1 - Release Notes
    • Astera 8.2 Release Notes
    • Astera 8.3 Release Notes
    • Astera 8.4 Release Notes
    • Astera 8.5 Release Notes
  • Getting Started
    • Astera 8 - Important Considerations
    • Astera 8 - System Requirements
    • Configuring the Server
    • Connecting to a Different Astera Server from the Lean Client
    • Connecting to an Astera Server using Lean Client
    • How to Build a Cluster Database and Create a Repository
    • How to Login from Lean Client
    • Setting up a Server Certificate (.pfx) File in a New Environment
    • Installing Client and Server Applications
    • Licensing Model in Astera 8
    • Migrating from Astera 7.x to Astera 8
    • UI Walkthrough - Astera 8.0
    • User Roles and Access Control
  • Dataflows
    • Sources
      • Data Providers and File Formats Supported in Astera
      • Setting Up Sources
      • COBOL File Source
      • Database Table Source
      • Data Model Query Source
      • Delimited File Source
      • Email Source
      • Excel Workbook Source
      • File Systems Item Source
      • Fixed Length File Source
      • PDF Form Source
      • Report Source
      • SQL Query Source
      • XML/JSON File Source
    • Transformations
      • Introducing Transformations
      • Aggregate Transformation
      • Constant Value Transformation
      • Data Cleanse Transformation
      • Denormalize Transformation
      • Distinct Transformation
      • Database Lookup Transformation
      • Expression Transformation
      • File Lookup Transformation
      • Filter Transformation
      • Join Transformation
      • List Lookup Transformation
      • Merge Transformation
      • Normalize Transformation
      • Passthru Transformation
      • Reconcile Transformation
      • Route Transformation
      • Sequence Generator Transformation
      • Sort Transformation
      • Sources as Transformations
      • Subflow Transformation
      • SQL Statement Lookup Transformation
      • Switch Transformation
      • Tree Join Transformation
      • Tree Transform
      • Union Transformation
    • Destinations
      • Setting Up Destinations
      • Database Table Destination
      • Delimited File Destination
      • Excel Workbook Destination
      • Fixed Length File Destination
      • SQL Statement Destination
      • XML/JSON File Destination
    • Data Logging and Profiling
      • Creating Data Profile
      • Creating Field Profile
      • Data Quality Mode
      • Record Level Log
      • Using Data Quality Rules in Astera
    • Database Write Strategies
      • Database Diff Processor
      • Data Driven Write Strategy
      • Dimension Loader - Database Write
      • Source Diff Processor
    • Text Processors
      • Delimited Parser
      • Delimited Serializer
      • Fixed Length Parser
      • Fixed Length Serializer
      • Language Parser
      • XML JSON Parser
      • XML JSON Serializer
    • Data Warehouse
      • Fact Table Loader
      • Dimension Table Loader
  • WORKFLOWS
    • What Are Workflows?
    • Using the Workflow Designer
    • Creating Workflows in Astera
    • Decision Task
    • EDI Acknowledgement Task
    • File System Task
    • File Transfer Task
    • OR Task
    • Run Dataflow Task
    • Run Program Task
    • Run SQL File Task
    • Run SQL Script Task
    • Run Workflow Task
    • Send Mail Task
    • Workflows with a Dynamic Destination Path
    • Customizing Workflows with Parameters
    • GPG-Integrated File Decryption in Astera
  • Subflows
    • Using Subflows in Astera
  • Functions
    • Introducing Function Transformations
    • Custom Functions
    • Logical
      • Coalesce (Any value1, Any value2)
      • IsNotNull (AnyValue)
      • IsRealNumber (AnyValue)
      • IsValidSqlDate (Date)
      • IsDate (AnyValue)
      • If (Boolean)
      • If (DateTime)
      • If (Double)
      • Exists
      • If (Int64)
      • If (String)
      • IsDate (str, strformat)
      • IsInteger (AnyValue)
      • IsNullOrWhitespace (StringValue)
      • IsNullorEmpty (StringValue)
      • IsNull (AnyValue)
      • IsNumeric (AnyValue)
    • Conversion
      • GetDateComponents (DateWithOffset)
      • ParseDate (Formats, Str)
      • GetDateComponents (Date)
      • HexToInteger (Any Value)
      • ToInteger (Any value)
      • ToDecimal (Any value)
      • ToReal (Any value)
      • ToDate (String dateStr)
      • TryParseDate (String, UnknownDate)
      • ToString (Any value)
      • ToString (DateValue)
      • ToString (Any data, String format)
    • Math
      • Abs (Double)
      • Abs (Decimal)
      • Ceiling (Real)
      • Ceiling(Decimal)
      • Floor (Decimal)
      • Floor (Real)
      • Max (Decimal)
      • Max (Date)
      • Min (Decimal)
      • Min (Date)
      • Max (Real)
      • Max (Integer)
      • Min (Real)
      • Pow (BaseExponent)
      • Min (Integer)
      • RandomReal (Int)
      • Round (Real)
      • Round (Real Integer)
      • Round (Decimal Integer)
      • Round (Decimal)
    • Financial
      • DDB
      • FV
      • IPmt
      • IPmt (FV)
      • Pmt
      • Pmt (FV)
      • PPmt
      • PPmt (FV)
      • PV (FV)
      • Rate
      • Rate (FV)
      • SLN
      • SYD
    • String
      • Center (String)
      • Chr (IntAscii)
      • Asc (String)
      • AddCDATAEnvelope
      • Concatenate (String)
      • ContainsAnyChar (String)
      • Contains (String)
      • Compact (String)
      • Find (Int64)
      • EndsWith (String)
      • FindIntStart (Int32)
      • Extract (String)
      • GetFindCount (Int64)
      • FindLast (Int64)
      • GetDigits (String)
      • GetLineFeed
      • Insert (String)
      • IsAlpha
      • GetToken
      • IndexOf
      • IsBlank
      • IsLower
      • IsUpper
      • IsSubstringOf
      • Length (String)
      • LeftOf (String)
      • Left (String)
      • IsValidName
      • Mid (String)
      • PadLeft
      • Mid (String Chars)
      • LSplit (String)
      • PadRight
      • ReplaceAllSpecialCharsWithSpace
      • RemoveChars (String str, StringCharsToRemove)
      • ReplaceLast
      • RightAlign
      • Reverse
      • Right (String)
      • RSplit (String)
      • SplitStringMultipleRecords
      • SplitStringMultipleRecords (2 Separators)
      • SplitString (3 separators)
      • SplitString
      • SplitStringMultipleRecords (3 Separators)
      • Trim
      • SubString (NoOfChars)
      • StripHtml
      • Trim (Start)
      • TrimExtraMiddleSpace
      • TrimEnd
      • PascalCaseWithSpace (String str)
      • Trim (String str)
      • ToLower(String str)
      • ToProper(String str)
      • ToUpper (String str)
      • Substring (String str, Integer startAt)
      • StartsWith (String str, String value)
      • RemoveAt (String str, Integer startAt, Integer noofChars)
      • Proper (String str)
      • Repeat (String str, Integer count)
      • ReplaceAll (String str, String lookFor, String replaceWith)
      • ReplaceFirst (String str, String lookFor, String replaceWith)
      • RightOf (String str, String lookFor)
      • RemoveChars (String str, String charsToRemove)
      • SplitString (String str, String separator1, String separator2)
    • Date Time
      • AddMinutes (DateTime)
      • AddDays (DateTimeOffset)
      • AddDays (DateTime)
      • AddHours (DateTime)
      • AddSeconds (DateTime)
      • AddMonths (DateTime)
      • AddMonths (DateTimeOffset)
      • AddMinutes (DateTimeOffset)
      • AddSeconds (DateTimeOffset)
      • AddYears (DateTimeOffset)
      • AddYears (DateTime)
      • Age (DateTime)
      • Age (DateTimeOffset)
      • CharToSeconds (Str)
      • DateDifferenceDays (DateTimeOffset)
      • DateDifferenceDays (DateTime)
      • DateDifferenceHours (DateTimeOffset)
      • DateDifferenceHours (DateTime)
      • DateDifferenceMonths (DateTimeOffset)
      • DateDifferenceMonths (DateTime)
      • DatePart (DateTimeOffset)
      • DatePart (DateTime)
      • DateDifferenceYears (DateTimeOffset)
      • DateDifferenceYears (DateTime)
      • Month (DateTime)
      • Month (DateTimeOffset)
      • Now
      • Quarter (DateTime)
      • Quarter (DateTimeOffset)
      • Second (DateTime)
      • Second (DateTimeOffset)
      • SecondsToChar (String)
      • TimeToInteger (DateTime)
      • TimeToInteger (DateTimeOffset)
      • ToDate Date (DateTime)
      • ToDate DateTime (DateTime)
      • ToDateString (DateTime)
      • ToDateTimeOffset-Date (DateTimeOffset)
      • ToDate DateTime (DateTimeOffset)
      • ToDateString (DateTimeOffset)
      • Today
      • ToLocal (DateTime)
      • ToJulianDate (DateTime)
      • ToJulianDayNumber (DateTime)
      • ToTicks (Date dateTime)
      • ToTicks (DateTimeWithOffset dateTime)
      • ToUnixEpoc (Date dateTime)
      • ToUtc (Date dateTime)
      • UnixTimeStampToDateTime (Real unixTimeStamp)
      • UtcNow ()
      • Week (Date dateTime)
      • Week (DateTimeWithOffset dateTime)
      • Year (Date dateTime)
      • Year (DateTimeWithOffset dateTime)
      • DateToJulian (Date dateTime, Integer length)
      • DateTimeOffsetUtcNow ()
      • DateTimeOffsetNow ()
      • Day (DateTimeWithOffset dateTime)
      • Day (Date dateTime)
      • DayOfWeekStr (DateTimeWithOffset dateTime)
      • DayOfWeek (DateTimeWithOffset dateTime)
      • DayOfWeek (Date dateTime)
      • DateToJulian (DateTimeWithOffset dateTime, Integer length)
      • DayOfWeekStr (Date dateTime)
      • FromJulianDate (Real julianDate)
      • DayOfYear (Date dateTime)
      • DaysInMonth(Integer year, Integer month)
      • DayOfYear (DateTimeWithOffset dateTime)
      • FromUnixEpoc
      • FromJulianDayNumber (Integer julianDayNumber)
      • FromTicksUtc(Integer ticks)
      • FromTicksLocal(Integer ticks)
      • Hour (Date dateTime)
      • Hour (DateTimeWithOffset dateTime)
      • Minute (Date dateTime)
      • JulianToDate (String julianDate)
      • Minute (DateTimeWithOffset dateTime)
      • DateToIntegerYYYYMMDD (DateTimeWithOffset dateTime)
      • DateToIntegerYYYYMMDD (Date dateTime)
    • Files
      • AppendTextToFile (String filePath, String text)
      • CopyFile (String sourceFilePath, String destFilePath, Boolean overWrite)
      • CreateDateTime (String filePath)
      • DeleteFile (String filePath)
      • DirectoryExists (String filePath)
      • FileExists (String filePath)
      • FileLength (String filePath)
      • FileLineCount (String filePath)
      • GetDirectory (String filePath)
      • GetEDIFileMetaData (String filePath)
      • GetExcelWorksheets (String excelFilePath)
      • GetFileExtension (String filePath)
      • GetFileInfo (String filePath)
      • GetFileName (String filePath)
      • GetFileNameWithoutExtension (String filePath)
      • LastUpdateDateTime (String filePath)
      • MoveFile (String filePath, String newDirectory)
      • ReadFileBytes (String filePath)
      • ReadFileFirstLine (String filePath)
      • ReadFileText (String filePath)
      • ReadFileText (String filePath, String codePage)
      • WriteBytesToFile (String filePath, ByteArray bytes)
      • WriteTextToFile (String filePath, String text)
    • Date Time With Offset
      • ToDateTimeOffsetFromDateTime (dateTime String)
      • ToUtc (DateTimeWithOffset)
      • ToDateTimeOffsetFromDateTime
      • ToDateTimeOffset (String dateTimeOffsetStr)
      • ToDateTimeFromDateTimeOffset
    • GUID
      • NewGuid
    • Encoding
      • ToBytes
      • FromBytes
      • UrlEncode
      • UrlDecode
    • Regular Expressions
      • ReplaceRegEx
      • ReplaceRegEx (Integer StartAt)
    • TimeSpan
      • Minutes
      • Hours
      • Days
      • Milliseconds
    • Matching
      • Soundex
      • DoubleMetaphone
      • RefinedSoundex
  • Report Model
    • User Guide
      • Report Model Tutorial
    • Report Model Interface
      • Field Properties Panel
      • Region Properties Panel
      • Report Browser
      • Report Options
    • Use Cases
      • Applying Pattern to Line
      • Auto Creating Data Regions and Fields
      • Auto-Parsing
      • Creating Multi-Column Data Regions
      • Floating Patterns and Floating Fields
      • How To Work With PDF Scaling Factor in a Report Model
      • Line Count
      • Pattern Count
      • Pattern is a Regular Expression
    • Exporting Options
      • Exporting a Report Model
      • Exporting Report Model to a Dataflow
    • Miscellaneous
      • Importing Monarch Models
      • Microsoft Word and Rich Text Format Support
      • Working With Problematic PDF Files
  • API Flows
    • API Consumption
      • Consume
        • REST API Browser
        • Making HTTP Requests Through REST API Browser
        • Using REST Client Outside of the Scope of the Project
      • Authorize
        • Authorizing ActiveCampaign API in Astera
        • Authorizing Astera Server APIs
        • Authorizing Avaza APIs in Astera
        • Authorizing Facebook APIs in Astera
        • Authorizing QuickBooks API in Astera
        • Authorizing Square API in Astera
        • Open APIs - Configuration Details
  • Project Management
    • Project Management
      • Astera's Project Explorer
      • Connecting to Source Control
      • Deployment
      • Server Monitoring and Job Management
    • Job Scheduling
      • Scheduling Jobs on the Server
      • Job Monitor
  • Use Cases
    • End-to-End Use Cases
      • Data Integration
        • Using Astera to Create and Orchestrate an ETL Process for Partner Onboarding
      • Data Warehousing
        • Building a Data Warehouse - A Step-By-Step Approach
      • Data Extraction
        • Reusing The Extraction Template for Similar Layout Files
  • Connectors
    • Connecting to Amazon Aurora Database
    • Connecting to Amazon RDS Databases
    • Connecting to Amazon Redshift Database
    • Connecting to Cloud Storage
    • Connecting to Google Cloud SQL in Astera
    • Connecting to MariaDB Database
    • Connecting to Microsoft Azure Databases
    • Connecting to MySQL Database
    • Connecting to Netezza Database
    • Connecting to Oracle Database
    • Connecting to PostgreSQL in Astera
    • Connecting to Salesforce Database
    • Connecting to Salesforce - Legacy Database
    • Connecting to SAP HANA Database
    • Connecting to Snowflake Database
    • Connecting to Vertica Database
    • Setting Up IBM DB2 iSeries Connectivity in Astera
  • Miscellaneous
    • Cloud Deployment
      • Deploying Astera on Amazon Web Services
      • Deploying Astera on Microsoft Azure Cloud
      • Deploying Astera on Oracle Cloud
    • Context Information
    • Pushdown Mode
    • Role Based Access Control in Astera
    • Safe Mode
    • Server Command Line Utility
    • SmartMatch Feature
    • Synonym Dictionary File
    • Updating Your License in Astera
    • Using Dynamic Layout/Template Mapping in Astera
    • Using Output Variables in Astera
    • Using the Data Source Browser in Astera
  • Best Practices
    • Astera Best Practices - Dataflows
    • Overview of Cardinality in Data Modeling
    • Cardinality Errors FAQs
Powered by GitBook

© Copyright 2025, Astera Software

On this page
  • Use Case
  • Using the Tree Join Transformation
  1. Dataflows
  2. Transformations

Tree Join Transformation

PreviousSwitch TransformationNextTree Transform

Last updated 9 months ago

The Tree Join Transformation object in the Astera Data Stack enables users to create complex, hierarchical data structures such as EDI or XML documents with ease.

Unlike the standard relational join which combines left and right elements to create a new record, the Tree Join Transformation object allows users to create collection and member nodes. It also enables users to join datasets in parent-child hierarchies using a key field. It is a set-level transformation that operates on a group of records.

Use Case

In this use case, we have two different source datasets. The first data contains information about Customers and has fields such as CustomerName, CustomerID, Address, etc.

The second dataset contains details of Orders placed by customers. It includes fields such as OrderID, CustomerID, RequiredDate, ShippedDate, and other shipping details.

We will join these two datasets using the Tree Join Transformation object and create a hierarchical dataset in which all orders placed by a customer along with the order details are represented in a parent-child hierarchy.

Contrary to the regular Join transformation that joins two datasets in a flat layout, the Tree Join transformation joins data from two different datasets into a hierarchical data structure.

In this use case, each record from the first dataset that contains Customer details will be a parent node, and under the parent node, the details of Orders placed by that customer will be returned in a child node.

Using the Tree Join Transformation

  1. To get the Tree Join Transformation object from the Toolbox, go to Toolbox > Transformations > Tree Join and drag-and-drop the Tree Join Transformation object onto the designer.

  1. Now map fields from the Customer source dataset to the TreeJoin object.

  1. Right-click on the TreeJoin object header and go to Properties from the context menu. In the Tree Join Layout Builder window, you can see the fields from the Customer dataset listed under the root node.

  1. Next, click on the TreeJoin node, and you will see that the small icons or buttons at the top of the screen will become active. If you click on the icon, you will get two options:

  • Add Member Object – To add a new member node to your layout

  • Add a Collection Object – To add a new collection node under the parent node. It will return all corresponding records as a collection under the parent node.

In this case, we will Add a Member Object to create a separate record for each order placed by a customer, under a separate customer record node.

  1. Add a Member Object to this root node. A dialogue box will open to name your member object.

In this case, let’s name it ‘Orders’ and click OK. A member object has been added to our parent node.

  1. Click OK, to close the properties window. Now map the Orders dataset to the member node that we created in the previous step to complete the layout.

  1. Go to the properties of the TreeJoin object again. We have already created the layout, so we will proceed to the next window.

  1. In the TreeJoin Transformation Properties window, we must specify the Join Key.

The join key is a common field or a common identifier in both datasets which will identify and join records in a tree-like structure. The parent and child fields are the same fields which are common in both the source datasets and serve as a key identifier to join records.

  • Parent Field – Join the field from the first dataset

  • Child Field – Same field as the parent field, selected from the second dataset.

In this case, the CustomerID field is common in both datasets, so we will use it as the join key.

  1. Click on the Parent field dropdown button. Expand the TreeJoin node and select the CustomerID field.

  1. Click on the Child field column and expand the TreeJoin root node. Scroll down to your member node, expand this node, and select the CustomerID field from the second dataset.

Let’s discuss the other options on the properties window:

  • Join In Database – This lets you join the tables in the database itself rather than in memory. However, it applies only when both tables are sourced from the same database.

  • Case Sensitive – To process and join records on a case-sensitive basis.

  1. We have our layout and the TreeJoin properties ready, click OK.

  1. Right-click on the TreeJoin object and select Preview Output.

The TreeJoin object has returned the customer records in parent nodes. Upon expanding the node, you can see the order placed by the customer listed as its member unit under the parent node.

If we choose to Add a Collection Object in the Layout Builder, all the records for orders placed by a customer will be returned in a collection under a single parent node for each customer.

This concludes using the Tree Join Transformation object in Astera Data Stack.

Download datasets used in the use case from the following link:

The joined dataset can now be written to a desired destination. In this case, we will write it to an object.

XML File Destination
274KB
Northwind.zip
archive